skip to main content


Search for: All records

Creators/Authors contains: "Nealy, Randall"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Practical testing of the latest wireless communications standards requires the availability of flexible radio frequency hardware, net-working and computing resources. We are providing a Cloud-based infrastructure which offers the necessary resources to carry out tests of the latest 5G standards. The testbed provides a Cloud-based Infrastructure as a Service. The research community can access hardware and software resources through a virtual platform that enables isolation and customization of experiments. In other words, researchers have control over the preferred experimental architecture and can run concurrent experiments on the same testbed. This paper introduces the resources that can be used to develop 5G testbeds and experiments. 
    more » « less
  2. The primary source of nonlinear distortion in wireless transmitters is the power amplifier (PA). Conventional digital predistortion (DPD) schemes use high-order polynomials to accurately approximate and compensate for the nonlinearity of the PA. This is not practical for scaling to tens or hundreds of PAs in massive multiple-input multiple-output (MIMO) systems. There is more than one candidate precoding matrix in a massive MIMO system because of the excess degrees-of-freedom (DoFs), and each precoding matrix requires a different DPD polynomial order to compensate for the PA nonlinearity. This paper proposes a low-order DPD method achieved by exploiting massive DoFs of next-generation front ends. We propose a novel indirect learning structure which adapts the channel and PA distortion iteratively by cascading adaptive zero forcing precoding and DPD. Our solution uses a 3rd order polynomial to achieve the same performance as the conventional DPD using an 11th order polynomial for a 10010 massive MIMO configuration. Experimental results show a 70% reduction in computational complexity, enabling ultra-low latency communications. 
    more » « less
  3. This paper presents Virginia Tech’s wireless testbed supporting research on long-term evolution (LTE) signaling and radio frequency (RF) spectrum coexistence. LTE is continuously refined and new features released. As the communications contexts for LTE expand, new research problems arise and include operation in harsh RF signaling environments and coexistence with other radios. Our testbed provides an integrated research tool for investigating these and other research problems; it allows analyzing the severity of the problem, designing and rapidly prototyping solutions, and assessing them with standard-compliant equipment and test procedures. The modular testbed integrates general-purpose software-defined radio hardware, LTE-specific test equipment, RF components, free open-source and commercial LTE software, a configurable RF network and recorded radar waveform samples. It supports RF channel emulated and over-the-air radiated modes. The testbed can be remotely accessed and configured. An RF switching network allows for designing many different experiments that can involve a variety of real and virtual radios with support for multiple-input multiple-output (MIMO) antenna operation. We present the testbed, the research it has enabled and some valuable lessons that we learned and that may help designing, developing, and operating future wireless testbeds. 
    more » « less
  4. The long-term evolution (LTE) has spread around the globe for deploying 4G cellular networks for com-mercial use. These days, it is gaining interest for new applica-tions where mobile broadband services can be of benefit to so-ciety. Whereas the basic concepts of LTE are well understood, its long-term evolution has just started. New areas of R&D look into operation in unlicensed and shared bands, where new ver-sions of LTE need to coexist with other communication systems and radars. Virginia Tech has developed an LTE testbed with unique features to spur LTE research and education. This pa-per introduces Virginia Tech’s LTE testbed, its main features and components, access and configuration mechanisms, and some of the research thrusts that it enables. It is unique in sev-eral aspects, including the extensive use of software-defined radio technology, the combination of industry-grade hardware and software-based systems, and the remote access feature for user-defined configurations of experiments and radio frequency paths. 
    more » « less